
Appearing as AAS 01-120 in the AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA, February 2001

 1

LIDAR-based Hazard Avoidance for Safe Landing on Mars

Andrew Johnson, Allan Klumpp, James Collier and Aron Wolf
Jet Propulsion Laboratory, California Institute of Technology

Mail Stop 125-209, 4800 Oak Grove Drive, Pasadena, CA 91109

Abstract

Hazard avoidance is a key technology for landing large
payloads safely on the surface of Mars. During hazard
avoidance a lander uses onboard sensors to detect
hazards in the landing zone, autonomously selects a safe
landing site, and then maneuvers to the new site. Design
of a system for hazard avoidance is facilitated by
simulation where trades involving sensor and mission
requirements can be explored. This paper describes the
algorithms and models that comprise a scanning LIDAR-
based hazard avoidance simulation including a terrain
generator, a LIDAR model, hazard avoidance algorithms
and powered landing guidance algorithms. Preliminary
simulation results show that the proposed hazard
avoidance algorithms are effective at detecting hazards
and guiding the lander to a safe landing site

1 Introduction

Safe landing on Mars can be achieved by either of two
design approaches. One is hazard tolerance, in which the
spacecraft is designed to withstand impact with whatever
terrain is expected in the landing zone; airbags (employed
by Mars Pathfinder) are an example. This can be an
unwieldy approach for large landers under consideration
for future missions. The second approach (and the focus
of this work) is hazard avoidance in which the spacecraft
uses onboard sensors to detect hazards in the landing
zone, selects an alternate landing site, and then maneuvers
to the new site. Design of a system for hazard avoidance
requires trades studies to investigate sensor requirements
and mission design. Analysis of these systems trades is
greatly facilitated by simulation. An integrated simulation
tool has been developed and is described here, along with
some illustrative results from a preliminary trade study.
Our simulation contains four modules that interact
according to the block diagram shown in Figure 1.
Terrain Generator: Topographic terrain data is needed
to model the hazards (rocks, cliffs, craters) likely to be
encountered during landing. A large database of high
resolution Martian terrain is not available, so a method for
synthetically generating realistic terrain is needed. Since
the results generated from the simulation will be useful
only if the underlying terrain is realistic, we use a method
for generating Martian terrain that is based on geophysical
processes. The terrain is generated by populating an

initial surface, which comes from coarse orbiter
topography data, with rocks and craters in a way that
models the aging of the Martian surface. Once generated,
the terrain is interrogated by the LIDAR model to
generate measurements of surface topography. A reduced
resolution of a nominal Martian terrain is shown in Figure
2(A).

LIDAR
Model

Hazard
Avoidance

Terrain
Generator

Detected Safe
Landing Site

S/C State and
Current Landing Site

Synthetic Terrain
Map

LIDAR
Samples

Powered
Landing

Guidance

Figure 1 Block Diagram for simulation.

LIDAR Model: A scanning LIDAR is currently the
terrain sensing instrument base lined for the Mars 2007
Smart Lander mission, so it is the sensor we model in our
simulation. A scanning LIDAR senses the 3-D
topography within its field of view by raster scanning a
pulsed laser beam across the targeted surface. By
measuring the time of flight of the laser pulses reflected
from the surface the range to the surface can be
determined for each scan. When combined with
measurements of the angular position of a mirror that
directs the scan, a 3-D point or sample can be generated
for each laser pulse. The output of the LIDAR is a cloud
of 3-D points that convey the topography of the scanned
surface. Assumed parameters for a landing LIDAR are a
10°x10° field of view with 10000 samples scanned in one

 2

second and a maximum range of 2km with a range
resolution of 2cm. We have built a model of a LIDAR
into our simulation that incorporates pointing errors and
range sensing errors due to measurement noise as well as
pulse stretching by the scanned terrain. The LIDAR
model uses efficient ray tracing algorithms from computer
graphics to generate 10000 samples in less than one
second, so it can be used for real-time simulation of
landing. The samples generated by the LIDAR model are
output to the hazard detection and avoidance algorithms
that compute safe landing sites.

(A)

(B)

(C)

Figure 2 Hazard avoidance simulation visualization
(A) Terrain and LIDAR scan. (B) Parameter maps
used to detect safe landing sites. (C) Safe landing site
map with hazards shown in red, safe zones shown in

green, previous landing sites shown as a black X and
the selected landing site shown as a purple +.

Hazard Avoidance: A particular patch of terrain presents
a hazard to the spacecraft during landing if the slope of
the patch is too steep or the patch contains rocks or other
protuberances that are taller than a certain terrain height.
To quantitatively determine if a patch is hazardous, the
slope and terrain variation over the patch must be
measured. We have developed algorithms that estimate
the location of surface hazards given scanning LIDAR
data and incorporated them directly into the simulation.
These algorithms build an elevation map from LIDAR
samples, estimate local slope and roughness using the
elevation map and then determine areas that exceed
constraints on surface slope and roughness given the
footprint of the lander. Images of nominal parameter
maps are given in Figure 2(B). Of the remaining safe
places to land, the hazard avoidance algorithm selects the
location with the minimum slope and roughness. This
new safe landing site is then passed to the powered
landing guidance module that uses it to compute a
trajectory to the new landing site. A safe landing map
with previous and new landing sites selected is shown in
Figure 2 (C).
Powered Landing Guidance: We use an algorithm for
powered-landing guidance that can retarget at any time to
a new point specified by hazard avoidance. Our guidance
algorithm, adapted from that flown on Apollo, transfers
the lander from any current state (position and velocity) to
touchdown in two phases, called "approach" and "vertical
descent". Each phase has a target point where the
position, velocity, and acceleration are all specified. The
approach-phase target is five or ten meters directly above
the landing site, and the vertical-descent-phase target is
on the surface. Specifying zero for the horizontal
components of target velocity and acceleration causes the
lander to arrive at each target point with zero transverse
velocity and in an erect attitude, regardless of any
maneuvering en route to avoid hazards. The vertical
components of approach-phase target velocity and
acceleration are chosen to provide a fuel-efficient transfer
with a safe thrust margin, and a vertical rate at the target
that is the same or close to the constant value flown in the
vertical-descent phase. In the vertical-descent phase, the
lander descends at around 1 m/s until the engines are shut
off upon or just before contacting the surface.
The simulation starts with the lander traveling along a
predetermined trajectory. Each time a LIDAR scan is
taken, hazards are detected and a (possibly) new safe
landing site is selected. This site is then passed to the
guidance module and it computes a new trajectory to the
desired landing site. This process is repeated until the
lander has landed safely on the surface. The rest of the
paper describes in detail the components of this
simulation.

 3

2 Synthetic Terr ain Map Generation

A requirement for any landing simulation is a physically
accurate model of the landing surface. This model must
contain enough fidelity that the sensor models that
interact with the surface can produce measurements that
are realistic. The simulation described in this paper uses a
sophisticated environment for modeling Martian terrain
that has been developed at JPL over the last decade[3][4].
The terrain generator software builds Martian surfaces by
sequentially applying geological processes to the surface.
These processes are realizations of the models used by
planetary geologists to describe the surface of Mars. Of
particular interest to safe landing is the statistical model
for rock size and density. In our simulation, the user has
control over the rock density parameter, so terrain of
varying difficulty for landing can be generated.

Figure 3 An example synthetic terrain map
populated with craters and rocks.

The terrain generator begins with an initial coarse surface.
Fractal surface generation is then used to fill i n the
terrain. This fractal surface is then acted upon by a
cratering process and a rock generation process. These
processes can be repeated to generate a surface that has
the appearance of one that has been created over time.
The user has complete control over the terrain generation
parameters, so surfaces of many types can be generated.
The Martian surface terrain generator has been
implemented on a 128-node SGI supercomputer. The
interface to the terrain generator is a terrain server. The
safe landing simulation requests a piece of terrain of a
particular size, resolution and rock density from the
terrain server. The terrain server then partitions the
generation of the terrain into multiple parts and passes the
compute intensive terrain generation off to multiple

processors on the supercomputer. The terrain pieces are
generated and the terrain server puts them together and
sends the complete terrain to the simulation.

3 LIDAR Model

The safe landing simulation requires a model of a
scanning LIDAR (LIght Detection And Ranging) so that
realistic LIDAR measurements can be generated from
synthetic terrain. This model should also be
computationally efficient so that it can be used in real-
time simulations. To this end, we have developed a n
efficient high fidelity model that emulates the physical
processes within a time-of-flight dual-axis gimbaled
mirror LIDAR.

Principal of Operation

A LIDAR, when pointed at a surface, measures the range
to this surface using laser light. A common range
measurement principal used in long range LIDAR is time-
of-flight; a laser pulse is emitted, the pulse is reflected
from the surface, and the time of the returning pulse is
recorded. This time is then converted to a range
measurement using the speed of light. Because the laser
beam has a finite divergence (angular width) the laser
beam will be reflected from a patch of the surface and a
continuum of ranges will result (pulse spreading). The
actual range measured by the LIDAR will be the range at
which the integrated return light energy passes a threshold
defined in the detector electronics. Usually this threshold
is defined in terms of the signal to noise of the
measurement.
A scanning LIDAR emits a continuous stream of laser
pulses and optics are used to sweep the laser beam across
a scene. Often single or dual axis gimbaled mirrors are
used to direct the laser beam. In this case, a scanning
LIDAR measurement, called a sample, consists of the
detected range to the surface and the measured angular
position of the mirror(s) when the laser pulse was emitted.
Mirror encoders are not perfect, so noise will be
introduced into the angle measurements.
A scan pattern defines the angular position of each
sample. Modifiable parameters of a scan pattern are type
of pattern (e.g., raster or spiral), the angular spacing
between samples and the field of view of the scan.
A parameterized function of mirror kinematics is used to
convert each sample into a 3-D point in a Cartesian
coordinate system attached to the LIDAR. The result is a
set of 3-D point that convey that shape of the scene being
scanned.
Measurement noise will be introduced into the 3-D points
generated from LIDAR samples in multiple ways: range
error from the integration of ranges within the footprint of
the laser and range detector noise; mirror angle
measurement noise; and errors in mirror kinematics

 4

parameters errors. A high fidelity model of a LIDAR
should take all of these noise sources into account.
Currently JPL is building a time-of-flight dual-axis
gimbaled mirror LIDAR. For this reason, a model of such
a sensor has been developed for the simulation described
in this paper. First the efficient model used to generate
range measurements given a LIDAR beam direction will
be described. This will be followed by a description of the
model used for laser beam scanning.

Range Measurement Model

Input into the range measurement model is a terrain map,
a 3-D ray (origin and direction) describing the true
direction of the laser pulse impinging on the terrain, and
the divergence of the laser pulse.
To account for the divergence of the laser, the pulse is
modeled as bundle of rays centered on the pointing
direction of the laser pulse (Figure 4). A portion of the
energy in the laser pulse is given to each ray, and each of
the rays is intersected with the terrain map (described
below) to get a range. To model the integration of laser
energy occurring in the LIDAR detector, the energies of
the rays are added in order of range (closest to farthest).
When the cumulative energy exceeds a threshold, the
range at that energy is the ideal detected range. Detector
noise is introduced by adding a gaussian distributed
range error to the ideal range and this is the output of the
range measurement model.
The most computationally expensive portion of the
LIDAR model is ray tracing: intersecting a ray with the
synthetic surface to determine range. To alleviate this
problem, an efficient ray tracing algorithm has been
developed for ray/terrain map intersection. Let a ray be
defined as r (t)=(rx(t),ry(t),rz(t)) = tba + with origin a =

(ax,ay,az) and direction b = (bx,by,bz), 1=b . First, the

maximum zmax and minimum elevation zmin in the terrain
map are determined before ray tracing. Then for a given
ray, the intersection of the ray with the maximum and
minimum elevation planes are given by r (tmax)and r (tmin)
where

zzzz baztbazt /)(/)(minminmaxmax −=−= .

model pulse
as bundle
of rays

Figure 4 By modeling the laser pulse as bundle of
rays the effect of pulse stretching can be simulated.

Suppose the synthetic terrain map T(r,c) has width H and
sampling between grid cells of S then a 3-D point x =
(x,y,z) can be projected vertically into the grid cell (r,c) in
the terrain map using the operator P(x)

)2//,2//(),(),,()(HSxHSycrzyxPxP ++=== .

As shown in Figure 5, the intersection of the r (t) with the
terrain map must occur along the line segment in the 2-D
row/column space of the terrain map between

),())((maxmaxmax crtP =r),())((minminmin crtP =r .

To find the intersection, a search along this line segment
and ray is used. The search starts at the grid cell (rs,cs)=
(rmax,cmax), and ray position r (ts) = r (tmax) where

)(),(szss trcrT ≤ . The elevation at each grid cell

),(ss crT is compared to the ray elevation)(sz tr at that

grid cell until the grid cell where)(),(szss trcrT > is
found. At this transition, the ray has passed though the
terrain map, so the intersection has been found. Linear
interpolation between the intersection and previous ray
points and terrain elevations is used to get a sub-grid cell
estimation of terrain map elevation zi at the intersection.
zi is converted into a range ρ using

zzi baz /)(−=ρ

),())((maxmaxmax crtP =r

),())((minminmin crtP =r

maxz

minz

)(maxtr

)(mintr

sz

)(sz tr

(A)

(B)

Figure 5 Intersection of a ray with a terrain map.
(A) A ray intersects a terrain map along a segment.
(B) Elevation view of the search for the ray/terrain
map intersection.

The procedure for ray intersection is used to get a range
for all rays in the bundle describing the laser pulse. The
energies associated with the rays are summed from closes
to farthest and when the cumulative energy exceeds a

 5

threshold, that range is the error free range for the pulse
ρn. Next, a gaussian error G(σρ) is added to ρn to simulate
detector noise. This range is then discretized to the
resolution of the range detection electronics δρ to get the
range measurement ρ.

Scanning Model

The scanning model is fairly simple because it models
the pointing of the laser during scanning using a two-axis
gimbaled mirror. The angles of the mirror are (θ,φ). The
scan model has parameters for field of view f, resolution n
(number of samples within field of view), and scan
pattern. Currently the model only supports raster scans.
For a raster scan, the field of view and number of samples
within the field of view create an array of equally spaced
angles (θn,φn) that define the direction of the laser beam
for each sample. Since pointing of the mirror is not
perfect, the actual mirror angles will not be exactly the
same as those defined by the scan pattern. This effect is
simulated in the scanning model by adding a gaussian
distributed offset, G(σθ,σφ) to each (θn,φn) pair to get
(θoff,φoff). Together (θoff,φoff) and the position and attitude
of the LIDAR determine the ray that is used to generate
range for each sample. To model sampling of angle
measurements by the mirror encoders, (θn,φn) are
discretized to the angular resolutions of the encoder
(δθ,δφ) to get the measured angles (θ,φ) The discretized
angles and the measured range constitute the LIDAR
sample (ρ,θ,φ) output for each pointing angle. The
LIDAR samples for all angles in the scan pattern
constitute the output of the LIDAR model for a single
scan.
In summary, the range measurement model has multiple
parameters including the divergence of the laser pulse d,
the number of rays used to model the pulse, the link
analysis parameters of the laser beam used to set the
threshold on return laser energy (laser power, pulse width,
etc.), the detector error added to the measured range σρ
and the range resolution δρ of the detector. The
parameters input into the scanning model are field of view
f, number of samples within field of view n, the pointing
error distribution G(σθ,σφ) and the mirror encoder
sampling (δθ,δφ).

Computational Issues

It takes less than 50µs to intersect a ray with a terrain map
on a 174 MHz R10000 SGI O2 workstation. For a
100x100 sample scan with 1 ray per sample this takes 0.5
seconds which is sufficient for real–time simulation given
that the JPL LIDAR under development is being designed
to take a 10,000 sample scan in 1 second. With greater
fidelity in the range measurement model (e.g. 10 rays per
sample) a scan can be generated in 5 s. Obviously, a
model of this level of fidelity cannot be run in real-time,

but it will be useful during off-line Monte Carlo
simulations.

4 Hazard Avoidance Algorithms

The inputs to hazard avoidance are LIDAR samples and a
vector describing the geodetic normal of the surface, both
in sensor coordinates. Also input is the safe landing
parameters: lander diameter, maximum lander incidence
angle and maximum surface roughness. The hazard
avoidance algorithms process these inputs to select a safe
landing site. Hazard avoidance takes part in three stages:
elevation map generation, hazard detection and safe site
selection.

Figure 6 Sensor and terrain map coordinates.

4.1 Elevation Map Generation

Elevation map generation is the process by which range
samples are projected into a grid to form a 2½-D surface
representation (regridding). Scanning laser rangefinders
generally have spherical or perspective projection models.
Also, scan patterns are not always regular raster scans;
spiral and triangle scans are common when minimizing
scanner power. Nonlinear projection models and irregular
scan patterns create an irregular sampling of the surface.
If the range samples are used directly, a time-consuming
hazard detection algorithm that accounts for the irregular
spacing between samples is needed. However, by
resampling the range samples from each scan to a regular
grid in Cartesian space, hazard detection can be
accomplished by applying fixed local operators to the
resampled grid. Resampling greatly simplifies the
underlying algorithms and data structures, so a more
efficient algorithm results
An elevation map is a function Z(r,c) that encodes surface
elevation on a regular grid. To generate an elevation map,
the horizontal size of each grid cell, s, and horizontal
extent, h, of the elevation map must be determined. As
shown in Figure 6, these parameters can be determined
from the scanner field of view f, the average of scan
samples across the scene n, and the average range to the
scene being imaged R. In general we set these parameters
as follows:

(1)
nhs

fRh

/

)2/tan(2

=
=

h

s
r

f

R

x
y

z
c

 6

With these settings, the elevation map will cover roughly
the same extent as the scanned data and each grid cell will
contain approximately one sample.
Once the elevation map parameters are established, the
procedure for elevation map generation is as follows.
First, each range sample is converted from scanner angle
and range coordinates to Cartesian coordinates (x,y,z).
Next, the (x,y) coordinates of the sample are used to
determine the floating point coordinates (r,c) that the
sample projects to in the grid cell

(2))2//,2//(),(hsxhsycr ++=

The coordinate relationship between sensor and elevation
map coordinates is shown in Figure 6. In general (r,c) will
fall between discrete grid cells, so, to prevent aliasing,
bilinear interpolation is used to update the elevation map.
Two arrays are used to perform bilinear interpolation: the
elevation accumulator E(r,c) and the bilinear weight
accumulator W(r,c). For each sample, the four grid cells
surrounding (r,c) are updated using

(3)

   

pqcrWpqzcrE

qpcrWqzpcrE

qpcrWzqpcrE

qpcrWzqpcrE

ccqrrp

=+=+++
−=+−=++

−=+−=++
−−=+−−=+

−=−=

),()1,1(

)1(),()1()1,(

)1(),()1(),1(

)1)(1(),()1)(1(),(

where   is the floor operator. After all samples have
been accumulated, the elevation Z at each grid cell i s
determined using

(4)),(/),(),(crWcrEcrZ =

Figure 7 Elevation map generation.

Due to the irregular sampling by the scanner, it is possible
that a grid cell did not have a sample projected into it and
consequently does not have an elevation value. For
efficiency during image alignment, it is important that the
elevation map be free of holes, especially near the center
of the map. A simple interpolation scheme is used to fill
any holes. First, hole cells are detected by finding cells
that do not have an elevation but are surrounded by cells
with elevation. Next, each hole cell i s assigned the
average elevation of all neighboring cells that have
elevation values. By repeating this process until all hole

cells have an elevation value, the holes in the elevation
map are filled incrementally. Figure 7 shows a typical
range scan, a elevation map before hole filling and a
elevation map after hole filling. Figure 9 shows an
elevation map (as a contour map) constructed for a
400x400 sample raster scan of synthetic Martian terrain.

4.2 Hazard Map Generation

The next step after generating the elevation map from the
LIDAR samples is the generation of landing incidence
angle and roughness maps that will be used in to select
safe sites for landing. To achieve this, the surface must be
separated into two components: the underlying smooth
surface from which landing incidence angle is computed
and the rocks and pits embedded in this surface from
which surface roughness is computed. First the low
frequency surface is computed; deviations from this
surface are then determined by subtracting it from the
original elevation map.

Robust Plane Fitting

Since the lander will be approaching the surface
vertically, landing incidence angle is defined as the angle
α between the local surface normal n and the geodetic
normal of the surface ng. Local surface normal at a terrain
grid cell is computed by fitting a plane to the terrain in the
neighborhood of the cell; the computed local surface
normal depends on the size of the neighborhood over
which the plane parameters are estimated. For safe site
selection, the normal of interest is the one that is
computed with a patch that is the size of the lander
footprint because this normal will i ndicate the resting
angle between the lander and the surface. If the lander
footprint is L meters then we approximate this size in
units of grid cells as  sLl /= where   is the ceiling
operator.
A plane is represented by the equation

0=+⋅ dxn
where n is the surface normal of the plane and d is the
plane intercept. The neighborhood of a grid cell can be
represented by a set of 3-D points.

},{ 21 mxxx �=N

Plane fitting finds the best fit plane (n,d) to these points
given some appropriate error metric. In many cases Mars
terrain can be characterized by scattered rocks on top of
relatively smooth terrain. The plane that is desired for
estimating local surface normal is the plane fit to the
surface in which the rocks are embedded. Given this
domain specific insight, estimating the plane of the
underlying smooth surface is a problem best solved by
robust statistical methods where rocks are treated as
outliers from the underlying smooth surface.
The robust statistical method used to fit a plane to the
underlying terrain is Least Median Square (LMedSq)

elevation map
 (contour image)

sample s

 7

estimation. The LMedSq algorithm uses the following
principal: three points define a plane; investigate multiple
triples of 3-D points in N and eventually a triple that is
free of outlier (rock) points will be found. The number of
triples t that must be investigated is based on the expected
percentage o of rock points in N and the desired
probability P of obtaining a triple without outliers.

))1(1ln(/)1ln(3oPt −−−=

LMedSq estimation algorithms follow a standard form
[6]; the LMedSq algorithm specialized to plane fitting is
as follows. Repeat the following steps for t triples. First
select a triple of non-collinear points (xa,xb,xc) randomly
from N. Next compute the parameters (n,d) for the plane
that is defined by the three points using

(5)
a

acab

d xn

xxxxn

⋅−=
−×−=)()(

Given this plane, the square plane errors ri are computed
for each of the remaining point in N.

}){(}{ 2dr ii +⋅= xn .

If the median of the above square plane errors is less than
the median square plane error computed for all previous
planes rmed , the current plane parameters becomes the

best encountered so far),(bestbest dn . The process is
repeated for all of the t triples. This procedure finds the
plane that minimizes the median square plane error,
hence, Least Median Square.
Next the robust standard deviation

medr r
t

22))
3

5
1(4826.1(

−
+=σ

is computed; using σ r , a neighborhood point xc is
considered an outlier, and consequently eliminated, if

rbestibesti 1dr >+⋅= 2)(xn

The final step in robust plane fitting is to fit a least-
squares (LSq) plane to the remaining inlier points in the
neighborhood. To fit a plane to multiple points we use the
standard least squares plane-fitting algorithm based on
finding the eigenvector of minimum eigenvalue of the
scatter matrix of the points [2].

LSq plane

LMedSq p lane

outliers/rocks

Figure 8 LMedSq versus LSq plane fitting.

The LMedSq algorithm eliminates the points in the
neighborhood that correspond to rocks and then fits a LSq
plane to the remaining points. If a LSq plane was fit to
the all of the points in the neighborhood, then the plane
would be skewed in the direction of rock points, which

would reduce the accuracy of the slope computation
needed for hazard detection. A comparison of LMedSq
and LSq plane fitting is given in Figure 8.

Map Generation

The robust plane (n,d) = (nx,ny,nz,d) fit at a grid cell x =
(x,y,z) intersects the underlying smooth rock free
elevation zs. zs is defined using the robust plane
parameters as

(6) zyxs ndnxnz)(++−=

The robust plane also defines the landing incidence angle
at the grid cell

(7))(cos 1
gg. nnnn ⋅= −

If a robust plane is fit at every grid cell then the
underlying smooth surface can be generated by
computing zs at every grid cell. Plane fitting is a relatively
computationally expensive operation. Given the real-time
requirements of landing, computing a robust plane at
every grid cell i s infeasible. Furthermore, robust plane
parameters will not change drastically between grid cells,
so computing them at every cell is wasted effort.
To alleviate the computational burden, a robust plane is
only fit to grid cells separated horizontally by the
footprint of the lander l. Furthermore, the size of the
neighborhood for each plane fit i s set to a square regions
centered around the grid cell of width l. The result is that
robust planes are fit to a coarse grid of cells with non-
overlapping neighborhoods that are the size of the lander.
At each of these grid cells zs and α are computed. In
between grid cells bilinear interpolation, similar to that
described in Section 4.1, is used to fill i n the gaps
between grid cells. The end result is are two maps Zs(r,c)
and A(r,c) that describe the underlying smooth surface
and the landing incidence angle, respectively, at each grid
cell i n the elevation map. Figure 9 shows the landing
incidence angle and smooth surface for the elevation map
given at the top of the figure.
Once the smooth surface has been generated, the
roughness map of the surface R(r,c) is simply computed
as the difference between the smooth surface Zs(r,c) and
the elevation map Z(r,c). Only absolute deviations are
needed to characterize roughness so

),(),(),(crZcrZcrR s−=

Figure 9 shows the roughness map for the elevation map
given at the top of the figure.

4.3 Safe Site Selection

The strategy behind the safe site selection is to generate a
landing cost map that first keeps the lander away from

 8

detected hazards and then, from the remaining terrain,
selects the landing site that has minimal landing incidence
angle and roughness.
 Hazard map generation creates maps that define landing
incidence angle and roughness at every grid cell i n the
elevation map. Using landing system constraints on
maximum surface roughness Rmax and landing incidence
angle Amax safe sites in the terrain are selected as follows.
First, the regions of the terrain that are hazardous to the
lander are detected be identifying grid cells (r,c) where

(8) maxmax),(),(AcrAorRcrR >>

More specifically, a landing cost map C(r,c) is
constructed. If a grid cells (r,c) violates (8) then C(r,c) is
set to 1.0. Furthermore, the lander cannot intersect any
grid cell that violates (8), so if (r,c) is within l of a grid
cell that violates (8) then C(r,c) is also set to 1.0. The
remaining unassigned grid cells are assigned the
normalized product of landing incidence angle and
roughness.

)*/()),(*),((),(maxmax ARcrAcrRcrC =

C(r,c) will be at or near 1.0 around grid cells that violate
the landing constraints; C(r,c) will be near zero for
regions that have small roughness and landing incidence
angle. By finding the minimum of C(r,c), the best
landing site will be found. However, in addition to
minimizing the landing cost, the landing site selected
should also be near regions of similarly low cost. This
concept can be implemented by smoothing the cost map
and then finding its minimum. Specifically, the cost map
is smoothed by setting C(r,c) to the average of all costs in
a square neighborhood of size l centered around (r,c). The
best safe landing site is then selected at the terrain
coordinate (r,c) that minimizes the smoothed C(r,c).
Figure 9 shows a landing map with detected hazards and
buffer zones of size l and the landing cost map for the
elevation map given at the top of the figure.

5 Powered Landing Guidance

Hazard-avoiding landing guidance was first developed for
Apollo [1][5] and the guidance algorithm planned for
Mars landings is a close cousin of Apollo's. In manned
lunar landings, the commander identified landing hazards
and manipulated a joy stick to redesignate the selected
landing site to a hazard-free area of the lunar surface. In
Mars landings, hazard detection and avoidance hardware
and software take the place of the commander. Landing
guidance cannot distinguish between human- and
machine-derived landing-site redesignation commands.
The most significant difference between landing on the
moon and landing on Mars is that the Lunar Module
approached the landing site along a nearly horizontal
trajectory whereas the Mars lander will approach the site

along a nearly vertical trajectory. This difference affects
the guidance algorithm, as explained below.

Terrain

Smoot h Terrain Incidence Angle

Cost Surface Roughness

Safe Landing

Figure 9 Hazard Avoidance Maps. In general, red
indicates hazard, green indicates safe and yellow
indicates unknown or partially safe.

Powered landing guidance transfers the lander from any
current state (position and velocity) to touchdown in two
phases, called "approach" and "vertical descent". Each
phase has a target point. The approach-phase target may
be five or ten meters above the surface, and the vertical-
descent target is near the surface, where the descent
engines are shut down. As the lander approaches a target,

 9

it nulls horizontal components of velocity and
acceleration so that it arrives at the target moving
vertically downward in an erect attitude. The vertical
descent is at constant velocity until the engines are shut
off at or slightly before touchdown. Shutting off the
engines before touching down makes the lander less likely
to tip over.
The guidance algorithm solves a two-point boundary-
value problem. The boundary values are the initial state
and the target conditions. Target conditions are the
position, velocity, and acceleration at the target point. By
reaching zero horizontal components of target velocity
and acceleration, the lander arrives at the target point
moving vertically and erect.
To solve the two-point boundary-value problem, the
guidance algorithm fits a polynomial between the current
state and the target conditions. Thus the transfer
trajectory is a polynomial in time. It expresses position
and its derivatives velocity, acceleration, jerk, and snap as
functions of the independent variable time.
With time (which is zero at the target and negative en
route) denoted T, the position vector and its derivatives
denoted R, V, A, J, and S, and current and target
conditions denoted by subscripts C and T, the two-point
boundary-value problem is expressed by

(9) TS T J T A T V RR TTTTTC 24/6/2/ 432 ++++=

(10) 62 32 / T S / T J T A VV TTTTC +++=

Both current vectors and the first three of the five target
vectors are given. The solution is the following matrix
equation, which expresses the target jerk and snap vectors
in terms of the five given vectors.

(11)












−−
−−−













−
−=








TAVV

TATVRR

TT

TT

S

J

TTC

TTTC

T

T 2/

/2472

/6/24 2

34

23

In terms of the target jerk and snap vectors, the current
acceleration vector is given by

(12) / T S T J A A TTTC 22++=

The guidance algorithm computes target jerk and snap
until near the end of the phase, stopping short of the end
to avoid dividing by powers of time as time approaches
zero. It computes current acceleration until the end, using
computed values of jerk and snap even when they are no
longer being computed. The current acceleration is used
for commanding engine thrust magnitude and direction.
This guidance algorithm solves the two-point boundary-
value problem for any value of time. For Mars landings,
time is chosen to produce a trajectory in which the
vertical component of jerk is constant. This contrasts
with Apollo guidance in which time was computed to
produce a specified target value of the downrange
component of jerk. In the Mars case, time is the solution

of a quadratic equation, and in the Apollo case it was the
solution of a cubic equation.

6 Simulation

The simulation ties together all of the previously
described pieces. The simulation consists of three
modules: the terrain server (TS), the powered guidance
module (PGM) and the LIDAR model/hazard avoidance
module (HAM). The TS communicates with the HAM
through TCP/IP sockets and the PGL and HAM
communicate though named pipes.
First the terrain server is started with a command to
generate a piece of terrain large enough to cover all
LIDAR scans expected during the simulation. Next the
PGM and HAM are started. The PGM starts with an
initial state and then propagates this state according to the
powered guidance equations. There is no navigation or
control errors in the simulation.

terrain smooth rough angle safe

Figure 10 Example of simulation output. Each row of
images corresponds to a single step of the simulation.
Note that there is a redesignation in the third row of
images.

At a rate of once per second, the PGM sends a command
to the HAM to generate a LIDAR scan and detect the
safest place to land. This command has the position and
attitude of the spacecraft when the scan was requested and
the current landing site. The HAM request some terrain
from the terrain server, generates a LIDAR scan and
detects hazards. If the current landing site is hazardous
then the HAM sends a new landing site back to PGM and
the PGM computes the new trajectory to the new landing
site. If the current landing site is safe then the HAM sends

 10

back the same current landing site and the PGM keeps the
current trajectory. This hazard avoidance loop repeats
until the spacecraft has landed. Parameters on landing site
position, spacecraft trajectory and fuel consumption are
recorded. If desired, images of hazard maps are recorder
for each step of the simulation as well. Images recorder
for five steps of a safe landing run are given in Figure 10.

7 Simulation Results

To demonstrate the usefulness of the simulation, and
prove the performance of the hazard avoidance
algorithms, some Monte Carlo simulations were
conducted. The first set of simulations quantifies the
performance of the hazard detection and avoidance
algorithms for a single LIDAR scan. The second set of
simulations investigate the performance of the end to end
powered landing system. The tests are preliminary and
will be used to design more accurate and more robust
guidance and hazard avoidance algorithms. The purpose
of the tests is to demonstrate the variety of parameters that
can be investigated with the simulation.

Table 1 Nominal parameters for the safe landing
simulation.

Terrain Map
Size 500 m
Resolution 0.1 m
Rock density 0.1

LIDAR Model
Field of view 10°
Resolution 100
Range error 0.02 m
Range resolution 0.02 m

Pointing error 0.001°
Pointing resolution 0.001°
Divergence 0.1°
Altitude 500 m

Hazard Avoidance
Lander base size 2.5 m
Roughness threshold 0.5 m

Incidence angle threshold 13°

Hazard Avoidance

Three LIDAR parameters were investigated for their
effect on hazard detection: LIDAR range detection error
σρ, LIDAR altitude a above the terrain and LIDAR

resolution n. Unless otherwise stated, the nominal
parameters for the simulation are given in Table 1.
 Figure 11 shows the results of the simulations in terms of
safe site detection probability (i.e., the percentage of truly
safe sites that were detected by the LIDAR scan) and safe
landing probability (i.e., the number of landing sites
selected by the hazard avoidance algorithm that were
actually safe when compared to ground truth).
Maximizing these probabilities is desirable although a
high safe landing probability is more important that a high
landing site detection probability.
The performance of hazard avoidance with respect to
altitude is poor for very low altitude then there is an
improvement at moderate altitudes and finally again at
high altitude the performance drops off. The poor
performance at low altitude is caused by terrains used in
the simulation some terrain having no safe place to land;
all of the terrain is hazardous. This observation indicates
that it better to make hazard avoidance decisions when
high above the surface. Because the LIDAR to laser
footprint increases with altitude, hazard detection
performance degrades with altitude. This is the reason for
decreasing hazard avoidance performance at high altitude.
The performance of hazard detection with respect to
scanning resolution is as expected. As scanning
resolution increases, the horizontal spacing between
samples on the surface decreases. This will result in more
hazards being detected and consequently better hazard
avoidance performance.
Hazard avoidance performance decreases as range
detector noise increases. As detector noise increases,
more false hazards and safe zones will be detected, so the
probability of choosing a hazardous landing site increase.

Safe Landing

Safe landing probability for a complete run of the landing
simulation (multiple scans and redesignations during
descent) was investigated as a function of rock density.
Approximately 100 Monte Carlo landings were performed
and the number of times that the final landing site was
safe, when compared to ground truth, was measured. For
each Monte Carlo run, the terrain scanned by the LIDAR
was varied. Each landing run started at 500 m with a
purely vertical velocity. The results are given in Table 2.
As expected, as rock density increases, the probability of
ultimately landing at a safe site decreases. However, even
for a high rock density (0.2) the safe landing probability is
above 93%.

Table 2 Safe landing simulation performance as a
function of rock density.

Rock Density
0.10 0.15 0.20

Safe Landing
Probability

1.00 0.98 0.93

 11

8 Conclusions

This paper has described an end to end simulation of
powered descent with hazard avoidance. This simulator
will be used during design of the next generation of Mars
landers and will eventually be incorporated into a
complete 12 degree of freedom simulation of all phases of
Martian entry, descent and landing. Types of questions
the simulation will help answer are:
• What are the requirements for the LIDAR in terms of

field of view and maximum range?

• How much fuel is consumed during landing?

• What control authority is needed to land safely given

• certain terrain statistics?

• What is the probability of safe landing?

References

[1] G.W. Cherry, "E Guidance - A General Explicit,
Optimizing Guidance Law for Rocket-Propelled
Spacecraft", MIT Instrumentation Laboratory (now
C.S. Draper Laboratory) Report R-456, 1964.

[2] R. Duda and P. Hart, Pattern Classification and
Scene Analysis, Wiley-Interscience, New York, 1973.

[3] R. Gaskell, “Martian Surface Simulations,” Jour.
Geophysical Research-Planets, 98(E6), pp. 11099-
11103, 1993.

[4] R. Gaskell, J. Collier, L. Husman and R. Chen,
“Synthetic Terrain Environments for Simulated
Missions,” JPL Internal Report, 2001.

[5] A.R. Klumpp, "Apollo Lunar Descent Guidance",
Automatica, Vol 10, pp. 133-146, Pergamon Press,
1974.

[6] C. Stewart, “Robust Parameter Estimation in
Computer Vision,” SIAM Review 41(3), pp. 513-
537, 1999.

Acknowledgements

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

Figure 11 Hazard avoidance performance.

